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ABSTRACT 
ING Bank, a large Netherlands-based internationally operating 

bank, implemented a fully automated continuous delivery pipe-

line for its software engineering activities in more than 300 teams, 

that perform more than 2500 deployments to production each 

month on more than 750 different applications. Our objective is to 

examine how strong metrics for agile (Scrum) DevOps teams can 

be set in an iterative fashion. We perform an exploratory case 

study that focuses on the classification based on predictive power 

of software metrics, in which we analyze log data derived from 

two initial sources within this pipeline. We analyzed a subset of 

16 metrics from 59 squads. We identified two lagging metrics and 

assessed four leading metrics to be strong. 

CCS CONCEPTS 
• General and reference → Cross-computing tools and 

techniques → Metrics 
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1 INTRODUCTION 
In order to further speed up application deployments, reduce risks 

of failure, and deliver applications rapid, repeatable, and reliable,  

ING Bank, a large Netherlands-based internationally operating 

bank, introduced Continuous Delivery as a Service (CDaaS) and 

DevOps. ING’s continuous delivery cycle includes code, build, 

deploy, test and release of all software engineering activities, and 

supports more than 300 software delivery teams - squads in ING 

terminology - that operate primarily on a Linux or a Windows 

platform. The mindset behind CDaaS is to go to production as fast 

as possible while maintaining or improving quality, so teams get 

fast feedback, and know they are on the right track. The 

continuous delivery pipeline is at the core of a transition that is 

ongoing within ING towards DevOps. 

ING’s continuous delivery cycle is now implemented. Two ma-

tured CDaaS squads support a huge variety of squads in different 

business domains and software technologies. And all teams work 

in an agile (Scrum) way. Yet, now a need is felt to develop a 

monitor and control capability that fits the different squads in the 

organization. In this process of setting up a software metrics 

approach, the company wants to prevent from looking at metrics 

in isolation, treating a metric (making alterations just to improve 

a metric), or one trick metrics on the one hand against metrics 

galore on the other [1]. In line with the fully automated building, 

testing, and deployment of software in the continuous delivery 

pipeline three important requirements are applicable. (1) The 

monitor and control capability is implemented as a fully auto-

mated and iterative process, (2) it supports the different squads 

where possible in improving their deliveries, and (3) the capability 

must have a high degree of predictive power.  

In this paper we describe the initial process to determine strong 

software metrics - being metrics with high predictive power - in 

order to be able to support a highly effective monitor and control 

capability within ING Bank. Because the process to classify met-

rics will be iterative – adding new metrics to the procedure will 

lead to a fluid and ongoing redefinition of the concept of ‘strong’ 
– we use the terminology of strong agile metrics. We perform our 
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analysis as an exploratory case study, based on two initial data 

sources from ING’s software engineering domain: the Backlog 
Management (BLM) discipline, and the Continuous Delivery 

(CDaaS) discipline. Although data is collected on a per squad level, 

strong metrics are analyzed and reported at an aggregated 

(average) level and not as such on a per squad level.  

Our objectives are to explore whether data mining techniques can 

help to define such strong agile metrics. In a follow-up case study 

based at this exploratory study we aim to develop a 1-to-5 star-

rating for software metrics, that can be used throughout ING’s 
software organization as a support tool when preparing 

dashboards and other visualizations. The aspect of automation 

and building a performance dashboard itself is not within the 

scope of this paper. We address the following research question: 

RQ How can we set strong metrics for agile (Scrum) DevOps teams 
in an iterative fashion? 

As our key contribution we evaluate how to determine the 

predictive power of software metrics from log data of a toolset of 

more than 300 different development teams in a large software 

company, that perform more than 2500 deployments to produc-

tion each month on more than 750 different applications. 

1.1 Background 
ING Bank implemented Continuous Delivery based on the model 

described by Humble and Farley [2], where the CD pipeline is pro-

posed as a deployment pipeline for the whole value stream of soft-

ware development. ING Bank set up two different pipelines based 

on the main technologies Linux and Windows. Its’ main goal is to 

support squads in maximizing the benefits of shared use of tools.  

In this paper we focus at the CDaaS Linux pipeline. It provides 

developers with a complete set of standard tools that are sup-

ported by a Linux CDaaS squad and available to all squads within 

the bank. The pipeline fully automates the software release pro-

cess for Linux based applications. It contains several specialized 

tools which are connected to each other, such as GitLab (code), 

Jenkins, SonarQube, and QWasp and  Artifactory (build), Nolio 

(deploy), iTested (test), and iValidate (release).  

The final goal of our analysis (yet, out-of-scope for this explora-

tory study) is to examine ‘good’ deliveries (being better than 
average within the scope of a squad) and ‘bad’ deliveries (being 
worse than average), as described in previous work on success and 

failure in software engineering projects [3]. By doing so we expect 

to identify success factors that help squads to create better deliver-

ies in future releases, and failure factors that help squads to 

prevent from ‘bad’ deliveries. However, due to the limited number 

of initial data sets this final goal is out-of-scope for this paper. 

2 RESEARCH APPROACH 
We conduct our research as an exploratory case study and we 

assess the predictive power of software delivery metrics, in which 

we use data derived from two initial sources. The first data source 

is log data from ServiceNow, the Backlog Management (BLM) tool 

that is used by most of the software development squads. The 

second data source that is used in this study is deployment log 

data from Nolio. 

For our exploratory study we define a limited set of software met-

rics focused at a delivery scope (e.g. epics, user stories) as a mini-

mum viable product (MVP): a product with just enough features 

to gather validated learning about the product and its continued 

development [4]. Based on the initial two data sets we designed 

four steps to define the MVP: (1) Scope definition, (2) Collect 

metrics, (3) Analyze for correlations, and (4) Determine prediction 

power of metrics. 

2.1 Scope Definition 
In this initial step we define the scope of the software metrics to 

be analyzed. Within the scope of this exploratory case study we 

limit the scope of data to log data of two data sources, derived 

from ServiceNow and Nolio. We combine a snapshot of Service-

Now data from 370 squads with CDaaS data of the deployment file 

from 101 squads. No time series are included in both datasets. We 

focus our analysis on squads; teams that deliver sets of user 

stories, combined in epics, to users within ING Bank or to ING’s 
customers. Due to various missing data in both datasets, linking 

both datasets result in 59 squads for which all data are present. 

This is our analysis set. 

2.2 Define and Collect Metrics 
In a number of meetings with stakeholders definitions of metrics 

and hypothesis are classified. A draft metrics framework, an in-

ventory of existing dashboards within the company, and an infor-

mal literature review are used as a baseline. Our intention is not 

to come up with a finalized inventory, but instead to set up and 

maintain a backlog of prioritized software metrics. In order to set 

up a repeatable future-proof procedure that is fully automated in-

the-end, we do not analyze raw data itself. Instead we structure 

the log data upfront in a dedicated data warehouse with an 

automated feed from BLM and CDaaS in the background. Within 

the scope of this study a limited set of one daily download is used 

for further analysis. In this initial data set observations with 

missing values are beforehand removed. 

2.3 Lagging and Leading Metrics 
In this paper we distinguish two types of metrics: lagging and 

leading metrics. Lagging metrics are output oriented and cannot 

be directly influenced. A lagging indicator gives a signal after the 

trend or reversal occurs. These metrics are perceived as key 

indicators for high performing teams. Leading metrics are input 

oriented and easy to influence. A leading indicator gives a signal 

before the trend or reversal occurs [5]. 
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2.4 Analysis 
We define and collect metrics from two initial data sources, clas-

sify metrics, and specify whether metrics are lagging or leading. 

we examine descriptive statistics and we analyze the total set of 

metrics from the two initial data sources for statistical correlation. 

To understand any relations between individual metrics we 

perform linear regression. For visualization purposes we prepare 

a correlation matrix that plots positive and negative correlations 

between all individual metrics; this matrix is not included in this 

paper, it is to be found in a Technical Report [6]. 

2.5 Determining Predictive Power of Metrics 
To classify software metrics based on their prediction strength 

with regard to the performance of releases delivered by agile 

(Scrum) DevOps teams, we use a search algorithm to find the best 

model, based on forward selection, backward elimination, and 

stepwise regression. We define strong metrics as leading metrics 

with strong correlation(s) to lagging metrics in the data set. Alt-

hough in our exploratory case study we do this in a manual way, 

we plan for automated methods to identify predictor variables in 

a future solution. Automated methods are useful when the 

number of explanatory variables is large, as in our case, and when 

it is not feasible to fit all possible models. For this purpose we built 

a new model in R, based on the existing Corrplot package, in 

which we visualize the outcomes of the multiple linear regression 

in a Leading Lagging Matrix (see Figure 1). 

 

 

3 RESULTS 
In Table 1 we inventory descriptive statistics of the BLM metrics 

and CDaaS metrics in scope. To test whether the data in our 

datasets is normally distributed or not, we used a skewness and 

kurtosis test. As values for skewness and kurtosis between -2 and 

+2 are considered acceptable in order to prove normal univariate 

distribution [7], we assess the majority of metrics in both subsets 

to be not normally distributed. 

3.1 Analysis of Predicting Variables 
We perform pairwise correlation in order to find any relations be-

tween individual metrics. Because a small majority of the metrics 

are assessed to be not normally distributed we use the method 

Spearman. A visualization in the form of a correlation matrix is 

included in the Technical Report [6]. Variables that have no 

significant correlation in a 1-to-1 analysis, may act differently in 

multiple regression. Remaining time ratio is an example of such a 

variable. 

We are modelling lagging indicators in terms of leading variables. 

In Figure 1 the impact of leading metrics on the set of lagging met-

rics is visualized in a Leading Lagging Matrix. The figure shows 

for each lagging variable (horizontal axis) what the impact is of 

each leading variable (vertical axis). The color of each circle 

indicates whether the impact is positive (blue) or negative (red). 

The size of a circle indicates whether impact is strong (large im-

pact) or weak (small impact). Same size circles on the same row 

do not mean they are equal: for each lagging variable the leading 

variables are calculated using multiple linear regression, subse-

quently all multiple linear regression coefficients are rescaled to a 

Table 1. Metrics Descriptions and Descriptive Statistics. 

Metric* Source n Type Skewness Kurtosis Min 1st Q Median Mean 3rd Q Max 

cdaas_cycletime_tst1_prd [Lagging] CDaaS 59 Days 0.56 -0.19 0.41 11.21 17.22 17.96 25.18 46.52  
cdaas_mtb_prd_lst90days CDaaS 59 Days 0.73 0.96 2.98 23.02 34.16 36.77 49.22 104.90  
cdaas_numberofdeploymentsprd CDaaS 59 Number 4.12 18.77 1.00 3.00 7.00 16.73 17.00 194.00  
sprint_averageleadtime BLM 59 Days 5.19 45.31 -6.50 22.15 31.17 37.65 44.25 370.50  
sprint_averagepointsperstory BLM 59 Ratio 3.37 13.34 0.03 0.08 0.11 0.17 0.17 1.00  
sprint_duration BLM 59 Days 3.14 21.08 5.00 13.00 13.00 14.79 14.00 55.00  
sprint_numberofchangemembers BLM 59 Number 3.76 30.14 0.00 7.00 9.00 9.54 11.00 51.00  
sprint_numberofepicslastsprint BLM 59 Number 1.51 3.77 1.00 7.00 11.00 12.00 16.00 48.00  
sprint_numberofsquadmembers BLM 59 Number 3.56 26.93 2.00 7.00 10.00 10.01 12.00 51.00  
sprint_plannedpointscompletionratio [Lagging] BLM 59 Ratio -0.62 -0.23 0.00 0.05 0.67 0.64 0.83 1.00  
sprint_plannedstoriescompletionratio [Lagging] BLM 59 Ratio -0.53 -0.55 0.00 0.44 0.67 0.63 0.86 1.00  
sprint_pointscompletionratio BLM 59 Ratio 0.29 1.75 0.02 0.50 0.72 0.70 0.90 2.18  
sprint_remainingtimeratio BLM 59 Ratio 5.28 29.28 0.00 0.00 0.00 0.03 0.00 1.00  
sprint_scopegrowth BLM 59 Number 16.65 283.94 -112.00 0.00 0.00 2.82 0.00 919.00  
sprint_unplannedexistingpointscompletionratio BLM 59 Ratio 1.53 1.85 0.00 0.00 0.07 0.17 0.27 1.00  
sprint_unplannednewpointscompletionratio BLM 59 Ratio 3.95 18.55 0.00 0.00 0.00 0.07 0.07 1.00  
Backlog Management (BLM) log data from ServiceNow and CDaaS log data from Nolio. *A more detailed description of each metric, including extended descriptive statistics is 

included in the Technical Report. In order to assess distribution we included Skewness and Kurtosis of each individual metric. Lagging metrics are indicated with the text 

[Lagging] behind their names in the first column of the table above. 
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scale of -1 to 1. Empty squares indicate a coefficient of zero. 

Crossed out variables are excluded from the lagging model in 

order to avoid collinearity (independent variables that are highly 

correlated). 

In this first exploratory study we used a pragmatic approach to 

determine which variables are leading or lagging in our model. 

We argued that in this first analysis three metrics are assessed to 

be lagging. (1) Planned stories completion ratio; the number of 

planned stories that were completed in a sprint divided by the 

number of planned stories. (2) Planned points completion ratio; the 

number of completed planned story points divided by the number 

of planned story points. (3) CDaaS cycle time; the mean time from 

first test deployment after last production has been done until the 

next production deployment for all applications of a squad.  

The choice for these three lagging metrics is mainly driven by the 

assumption that they are typically output related and cannot 

easily be planned upfront. For analysis purposes we included a 

reference set of five other metrics on the x-axis of the matrix, 

although these were not assumed to be lagging. 

3.4 Key Findings 
When examining the Leading Lagging Matrix as depicted in Figure 

1, we observe the following: 

Observation 1. Higher average story points (5th row) have a nega-

tive impact on the planned completion ratio (either points or 

stories) and on the total completion ratio. Besides that, higher 

average story points lead to a longer CDaaS cycle time (from test 

to production). 

Observation 2. If the planned points completion ratio (10th row) 

goes up, also the number of epics increases. At the same time 

unplanned backlog work (unplanned existing) decreases.  

Observation 3. The planned stories completion ratio (11th row) 

shows an opposite effect: if this variable goes up, the number of 

epics decreases. The different behavior of both metrics need to be 

examined further in follow-up research. 

Observation 4. If the points completion ratio (12th row) increases, 

also the number of epics goes up, an effect that is similar to Obser-

vation 2.  

Observation 5. If the remaining time ratio (13th row) goes up, the 

number of epics and the CDaaS cycle time decreases. Further-

more, if there is time left after all planned work is done, we see 

that squads pick up backlog work.  

Observation 6. When unplanned existing work (15th row) (e.g. 

picked up from backlog) pops up this has a moderate negative 

impact on the planned work and the ability to pick up backlog 

work. In this case the number of epics increases moderately, while 

remaining time ratio increases strongly. 

 

Figure 1: Leading Lagging Matrix showing the impact of leading metrics (vertical axis) on lagging metrics (horizontal axis). 
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Observation 7. Average lead time is negatively impacted by 

unplanned new work (e.g. incidents) (bottom row), possibly 

because it delays planned work that was already started in the 

current sprint or earlier and that cannot finish in the planned time. 

Average lead time is not tightly linked to a sprint, but more to a 

user story.  

Observation 8. No significant impact is caused in our models by 

the three CDaaS variables, and the remaining BLM variables. 

4 DISCUSSION 
As explained in paragraph 3.3 we assumed upfront three metrics 

to be lagging: planned stories completion ratio, planned points 

completion ratio, and CDaaS cycle time. The first two metrics are 

both about the completion of planned work, so to say the 

predictability of delivery of squads. We prefer planned stories 

completion ratio because it has the advantage that scope growth 

(measured in story points) has no influence on the ratio value. 

Leading variables for this metric are unplanned new points 

completion ratio, unplanned existing points completion ratio, and 

average points per story. With regard to this lagging metric we 

assess these three leading variables as ‘strong metrics’. 
The third lagging variable, CDaaS cycle time, can be influenced 

by the leading variables remaining time ratio and average points 

per story. With regard to this lagging metric we assess both lead-

ing variables as ‘strong metrics’. 
Besides these three variables we observe that also the number of 

epics (4th column from the left) can be influenced strongly by 

planned points completion ratio, points completion ratio, remain-

ing time ratio, unplanned existing points completion ratio, and 

unplanned new points completion ratio. However, because we 

assume that this variable can be easily planned upfront we do not 

assess it as a lagging variable as such. 

From an overall point of view we argue that average points per 

story is influencing both preferred lagging metrics, and due to that 

is to be assessed as the most powerful metric in the actual subset.  

4.1 Implications 
Our model, based on an initial subset of BLM and CDaaS data, 

indicates that squads can improve their planned stories comple-

tion ratio and reduce their CDaaS cycle time by slicing their deliv-

erables in smaller user stories. Squads can reduce their CDaaS 

cycle time by keeping open space in their sprint planning (e.g. in-

creasing their remaining time ratio). Finally, by reducing unex-

pected unplanned work squads can increase their predictability of 

delivery (e.g. planned stories completion ratio). These 

implications are also identified by Humble and Farley [2] as key 

measures for implementing Continuous Delivery and DevOps. 

Our research herewith substantiated these measures based on 

statistical analysis of ING’s Continuous Delivery cycles. 

4.2 Threats to Validity 
With regard to construct validity we are aware that the use of sto-

ry points for comparison purposes over squads might be spurious 

in a way. However, to prevent from differences in ranges used by 

different squads we calculated all measurements with story points 

involved to indexes. A second threat that we take into account is 

the way we picked metrics to be included in the study and the 

choice of lagging versus leading metrics. In our actual approach 

we inventoried metrics in related work and existing dashboards 

within ING bank, and mapped these on a metrics framework that 

we based on previous work [8]. We realize that some systemic 

bias might play a role here and are looking for ways to mitigate 

this in a more mature approach. A third threat with regard to 

construct validity is that we did not exclude outliers from our 

research dataset. Although we realize that this is important for a 

future approach we did not include this in this exploratory study. 

Finally we recognize challenges with data quality as a threat to 

validity. Especially to link BLM data on squads and applications 

with the CDaaS dataset was a blockade in some cases. 

A threat to internal validity that we acknowledge is the fact that 

‘fishing for p -values’ might hold a risk that some of the correla-

tions we find are a coincidence. Although we acknowledge the 

fact that in a future approach corrections (e.g. Benjamini–Hoch-

berg [9]) are to be implemented, we did not apply any of such 

corrections in this initial and exploratory study. 

Concerning external validity we argue that results from our study 

are not to be generalized to other companies than ING Bank. We 

assume that different companies have their own specific metrics 

patterns. We expect that our approach to derive strong metrics by 

mining log data from software delivery pipeline tools can be 

successfully used in practice by other companies too. To encour-

age reuse and further improvement of our approach, we share a 

subset of the R-code developed by us in the Technical Report [6]. 

5 RELATED WORK 
Where from the 80s onwards software companies used to follow 

a software process improvement (SPI) approach with varying suc-

cess [10] [11], since the start of this millennium an industry-wide 

transformation towards agile development methods is obvious. 

Although several studies are performed on the success and failure 

of agile methods [12] [13] [3], a clear definition of success is diffi-

cult to find. A number of researchers and practitioners come up 

with terms such as hyperproductivity [14] [15] [16], usually with 

a limited focus on best practices in a Scrum environment, de-

scribed as for example ‘the most productive Java projects ever 

documented’ [14]. To define definitions for hyperproductivity and 

accompanying software metrics we based our research besides the 

above on metrics for continuous delivery as mentioned by Hum-

ble and Farley [2] and on Puppet’s State of DevOps Report [5].  

The effect on strong positive correlations between Project Size, 

Project Cost, and Number of Defects is known from related work 

[3] [17] [18]. Also the effect of project size as a risk factor is de-

scribed earlier. Smaller projects tend to have lower cancellation 

rates [19]. Smaller projects tend to perform better in terms of qual-

ity, being on budget, and being on schedule [19] [20]. Project size 

is found to be an important risk factor for success [21] [22] [23].  
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In previous work we found strong effects by comparing quantita-

tive metrics such as cost, duration, number of defects, and size 

with qualitative metrics like stakeholder satisfaction and per-

ceived value [8]. A recent guest editorial by Mäntylä et al. [24] 

mentions that, although “many papers investigate success and 

failure of software projects from diverse perspectives, leading to 

a myriad of antecedents, causes, correlates, factors and predictors 

of success and failure”, a solid, empirically grounded body of evi-

dence enabling actionable practices for increasing success and 

avoiding failure in software projects is not yet found.  

Premrai et al. [25] investigated how software project productivity 

had changed over time, finding that an improving trend was 

measured, however less marked since 1990. The trend varied over 

companies and business sectors, a finding that matches the result 

of our previous research with regard to differentiation over 

business domains [3]. 

6 CONCLUSIONS AND FUTURE WORK 
We analyzed a dataset built from BLM and CDaaS data from ING 

Bank in order to identify strong metrics; metrics with high 

predictive power towards a subset of lagging variables. We found 

two lagging metrics and four leading metrics that are assessed to 

be strong. 

In future research we plan to extend the number of data sources - 

e.g. availability, squad decomposition, business process perfor-

mance, customer experience, incidents - and due to that the num-

ber of variables in our model. We also plan to examine how lag-

ging metrics and strong leading metrics can be identified in an 

automated procedure. Furthermore we intend to automatically set 

targets on the strong agile metrics, based on the performance of 

high performing teams within ING Bank. Our final objective is to 

use our findings to define relevant lagging metrics and related 

strong leading metrics to enable squads and management to steer 

on performance by delivering strong agile metric dashboards. 
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Technical Report - Global Agile Metrics 
1 Introduction and first inspection 

1.1 Introduction 
Goal of the first part of this project is to establish a way of working to analyze data and distinguish leading and lagging metrics. 

Way of working: 

x Get your data 
x Inspect your data 
x Correlate all data 
x Define the output variable(s) (Lagging variable) 
x Get an impression of the data and describe it 
x Choose by intuition which variables could be lagging variables and test the assumption 
x Calculate which independent variables are predictor for the output variable.(leading variable) 
x Repeat above steps for all new data that is added to data set 

1.2 Next Cycle: Addition of CDaaS Deployment Data to the Sprint Data 
After obtaining the ServiceNow Backlog Management (BLM) data we added the CDaaS data. There are about 370 squads. For 316 we have 
BLM data for all the BLM variables. We excluded squads with missing data. For 101 squads be have CDaaS deployment data available. The 
union of both result in approximately 59 squad observations. 

Regarding the CDaaS date we expect to see that:  

x Teams with more deployments lead to shorter cycle. 
x Shorter cycle times also indicate lower average story size? 

Adagium of first cycle: Just add the data and see what happens. 

Is the lagging variable still the lagging variable? 

1.3 Data quality  
CDaaS portal is not adequately connected to ServiceNow. It misses unique application names and application IDs and ServiceNow squad 
names. 

Naming convention on the CD portal is not strict and CD portal teams and are named to the production name. Application ID is missing, but 
will be added in the future. CD Portal names are different from ServiceNow teams. 

In preparation to go live of the IT ServiceManagement (ITSM) module in ServiceNow an excel list is prepared and maintained until go live of 
the link between application name and squad name. This list is not complete yet. An attempt to use the CI Long Name failed as it also contains 
environment post fixes, which were not expected. 

Finally in a last attempt we tried to retrieve the squad name by finding out who deployed an application and whether this person is linked to 
only one squad name in ServiceNow. If so, that squad name was linked to the application name. Furthermore if that application was deployed 
more often and not yet linked to this squad name, then this squad name was added. 

1.4 First Cycle 
For the first cycle we tried some arbitrary metrics to find out how the R tooling works. And later on we added some more metrics. In this report 
you will see the combined data set. 

1.5 Data source 
x Snapshot Backlog management, (No time series) 
x MS Access is used to gather the metrics. 
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1.6 Metrics Definitions 
All sprint metrics are calculated based on the last completed sprint of a squad before a certain snapshot date 

Metric Name Metric Description 

cdaas_cycletime_tst1_prd Mean time from first test deployment after last production has been done until 
the next production deployment for all applications of a squad 

cdaas_mtb_prd_lst90days Mean time between production deployments in the last 90 days 

cdaas_numberofdeploymentsprd                   Number of deployments per squad 

sprint_averageleadtime             The average time in days between creation of user story until completed, for the 
stories that got completed in the current sprint. 

sprint_averagepointsperstory                    Average size of a story compared to the completed points.  

sprint_duration                                Sprint End date – Sprint Start date  

sprint_numberofchangemembers                    Number of change members in sprint (opposed to business and operation 
members) 

sprint_numberofepicslastsprint                 Number of epics involved in a sprint 

sprint_numberofsquadmembers                     Number of squad members in a  sprint 

sprint_plannedpointscompletionratio             Sprint_PlannedPointsCompleted / Sprint_PlannedPoints 

sprint_plannedstoriescompletionratio            Sprint_PlannedStoriesCompleted / Sprint_PlannedStories 

sprint_pointscompletionratio                    Sprint_CompletedPoints / Sprint_PlannedPoints 

sprint_remainingtimeratio                       Remaining time left until the end of the sprint measured from the moment that 
the last planned story's status is set to complete 

sprint_scopegrowth                              Change in point size during the sprint compare with the first day of the sprint. 
Can be positive, 0 or negative. 

sprint_unplannedexistingpointscompletionratio   Unplanned Existing Completed Points / Sprint Completed  Points 

Unplanned existing work is work that was already on the Product backlog and 
pulled into the current sprint after Day 1 of the sprint 

sprint_unplannednewpointscompletionratio      Unplanned New Completed Points / Sprint Completed  Points 

Unplanned New work is a story that is created after day 1 of the sprint.  
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1.7 Way of Working 

 

1.8 Get your data 
There is a daily download of the ServiceNow data. This is imported into Access. Using several queries the input for R is created and exported 
to csv format. 

In the future this data will come directly from the datamart. The code for this link is already present in R here below. 

First step: Load the data by reading the created csv. 

if (FALSE) { 
  dbhandle <- odbcDriverConnect("driver=SQL Server; server=xxxxxxxxxxx;trusted_connection=true") 
  dtinput <- sqlQuery(dbhandle, 'SELECT TOP 10 [Number] FROM [DataMart01].[dbo].[factsprint]')  # test 
query 
  odbcClose(dbhandle) 
} else { 
  dtinput <-  data.frame( read.csv("Data_BLM_CDAAS.csv", header = TRUE, sep=";" ) ) 
} 
dtinput <- dtinput[ , order(names(dtinput))] 
names(dtinput) <- tolower(names(dtinput)) 
 
#Leave out factor and character variables: 
dt <- dtinput[,-grep ("factor|character", sapply (dtinput, class))] 
#dt <- sort(dt,decreasing=TRUE) 
#At some point in time you may wish to leave out columns by name 
drops <- c("update_frequency", "bl_p_upnvsmax", "bl_p_upevsmax", "tribe", "squad_name") 
dt <- dt[ , !(names(dt) %in% drops)] 
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1.9 Data inspection 
A straightforward summary is always a good place to begin, because for one thing it will find any variables that have missing values. 

Structure 

str(dt) 

 

## 'data.frame':    59 obs. of  16 variables: 
##  $ cdaas_cycletime_tst1_prd                     : num  3.97 6.05 19.69 26.7 23.05 ... 
##  $ cdaas_mtb_prd_lst90days                      : num  65.5 23 49 31.8 72.3 ... 
##  $ cdaas_numberofdeploymentsprd                 : int  65 1 14 7 1 4 18 39 4 13 ... 
##  $ sprint_averageleadtime                       : num  34.7 27.2 25.5 33.3 40.7 ... 
##  $ sprint_averagepointsperstory                 : num  0.13 0.08 0.05 0.11 0.26 0.15 0.05 0.14 0.18 0.09 
... 
##  $ sprint_duration                              : int  14 13 13 14 13 13 20 20 13 13 ... 
##  $ sprint_numberofchangemembers                 : int  11 9 6 6 7 8 6 13 10 8 ... 
##  $ sprint_numberofepicslastsprint               : int  10 15 16 11 5 7 24 5 7 11 ... 
##  $ sprint_numberofsquadmembers                  : int  11 9 7 6 7 8 7 14 10 9 ... 
##  $ sprint_plannedpointscompletionratio          : num  0.846 0.917 1 0.909 0.75 ... 
##  $ sprint_plannedstoriescompletionratio         : num  0.84 0.941 1 0.893 0.88 ... 
##  $ sprint_pointscompletionratio                 : num  0.913 0.952 1.8 0.929 0.824 ... 
##  $ sprint_remainingtimeratio                    : num  0 0 0 0 0 0 0 0 0 0 ... 
##  $ sprint_scopegrowth                           : int  0 0 0 0 0 0 0 0 3 0 ... 
##  $ sprint_unplannedexistingpointscompletionratio: num  0.0952 0.25 0.0926 0 0 ... 
##  $ sprint_unplannednewpointscompletionratio     : num  0 0.05 0.2593 0.0385 0 ... 

Summary 

#t(summary(dt)) 

st <- t(do.call(cbind, lapply(dt, summary))) 
st <- cbind(st, t(skewness(dt)), t(kurtosis(dt)) ) 
st 
##                                                   Min. 1st Qu.   Median 
## cdaas_cycletime_tst1_prd                       0.41370 11.2100 17.22000 
## cdaas_mtb_prd_lst90days                        2.97900 23.0200 34.16000 
## cdaas_numberofdeploymentsprd                   1.00000  3.0000  7.00000 
## sprint_averageleadtime                         5.11200 25.5500 33.08000 
## sprint_averagepointsperstory                   0.05000  0.0800  0.12000 
## sprint_duration                               12.00000 13.0000 13.00000 
## sprint_numberofchangemembers                   4.00000  7.0000  9.00000 
## sprint_numberofepicslastsprint                 1.00000  7.0000 11.00000 
## sprint_numberofsquadmembers                    4.00000  8.0000 10.00000 
## sprint_plannedpointscompletionratio            0.00000  0.4721  0.72410 
## sprint_plannedstoriescompletionratio           0.00000  0.5074  0.67650 
## sprint_pointscompletionratio                   0.04545  0.5601  0.68920 
## sprint_remainingtimeratio                      0.00000  0.0000  0.00000 
## sprint_scopegrowth                            -1.00000  0.0000  0.00000 
## sprint_unplannedexistingpointscompletionratio  0.00000  0.0000  0.11110 
## sprint_unplannednewpointscompletionratio       0.00000  0.0000  0.03061 

##                                                   Mean 3rd Qu.     Max. 
## cdaas_cycletime_tst1_prd                      17.96000 25.1800  46.5200 
## cdaas_mtb_prd_lst90days                       36.77000 49.2200 104.9000 
## cdaas_numberofdeploymentsprd                  16.73000 17.0000 194.0000 
## sprint_averageleadtime                        35.52000 40.7200 136.7000 
## sprint_averagepointsperstory                   0.15270  0.1800   1.0000 
## sprint_duration                               14.42000 14.0000  34.0000 
## sprint_numberofchangemembers                   9.10200 11.0000  15.0000 
## sprint_numberofepicslastsprint                11.41000 15.0000  28.0000 
## sprint_numberofsquadmembers                    9.76300 11.0000  15.0000 
## sprint_plannedpointscompletionratio            0.64920  0.8258   1.0000 
## sprint_plannedstoriescompletionratio           0.64020  0.8697   1.0000 
## sprint_pointscompletionratio                   0.69730  0.8987   1.8000 
## sprint_remainingtimeratio                      0.01425  0.0000   0.3077 
## sprint_scopegrowth                             0.10170  0.0000   3.0000 
## sprint_unplannedexistingpointscompletionratio  0.19170  0.2848   0.8889 
## sprint_unplannednewpointscompletionratio       0.08522  0.1111   0.8000 

##                                                 Skewness Excess Kurtosis 
## cdaas_cycletime_tst1_prd                       0.5583460      -0.1916332 
## cdaas_mtb_prd_lst90days                        0.7303560       0.9596513 
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## cdaas_numberofdeploymentsprd                   4.1232022      18.7709372 
## sprint_averageleadtime                         3.1495237      15.1360934 
## sprint_averagepointsperstory                   4.6346163      26.7361704 
## sprint_duration                                3.7347634      16.7196697 
## sprint_numberofchangemembers                   0.3598441      -0.4325227 
## sprint_numberofepicslastsprint                 0.5736728      -0.2320281 
## sprint_numberofsquadmembers                    0.3264224      -0.3740228 
## sprint_plannedpointscompletionratio           -0.6125398      -0.4608336 
## sprint_plannedstoriescompletionratio          -0.6127988      -0.4153330 
## sprint_pointscompletionratio                   0.5183665       1.5347557 
## sprint_remainingtimeratio                      4.0891617      15.4764432 
## sprint_scopegrowth                             3.5853894      13.9384310 
## sprint_unplannedexistingpointscompletionratio  1.2242807       1.1303911 
## sprint_unplannednewpointscompletionratio       2.7216999       8.9543944 

 

##Display first and last rows of the table for inspection only 
#head(dt) 
#tail(dt) 

1.10 Included observations and missing values 
Currently observations with missing values are taken out of the dataset on forehand in Access. 

To be included as an observation the variables must comply to the following rules: 

Variable Inclusion rule Remark 

sprint_numberofsquadmembers > 0 Only Teams that have at least 1 CIO NL member are included 

sprint_numberofchangemembers not NULL  

sprint_duration > 0  

sprint_averagepointsperstory > 0 Maybe this rule should not be enforced 

sprint_numberofepicslastsprint not NULL  

sprint_pointscompletionratio not NULL Squad must have at least one Completed Sprint 

 

The variable sprint_averagepointsperstory maybe has to be replaced with sprint_averageplannedpointsperstory. Currently it calculates only the 
user stories that are completed within the sprint. 

A quick look at how variables in the current dataset are correlated can be established with a correlation matrix, combined with scatterplots. 
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1.11 The correlation matrix in color 
For each pair of variables the correlation between the two is calculated. If the p-value is much less than 0.05, we reject the null hypothesis and 
conclude there is a significant relationship between the two variables in the linear regression model of the data. 

The correlation value is always a number between -1 and 1. 

To blank out insignificant correlation values, the parameter p.mat must be provided as a matrix of p-values. If not provided, the arguments 
sig.level, insig, pch, pch.col, pch.cex are invalid and all correlation values will be shown. To see even the smallest circles a colored background 
is used. 

Insignificant values are not shown (see parameter: insig=“blank”). The significant level is set to 0.05. 

Usually, a significance level (denoted as alpha) of 0.05 works well. A significance level of 0.05 indicates a 5% risk of concluding that a 
difference exists when there is no actual difference. 

See also: http://support.minitab.com/en-us/minitab/17/topic-library/basic-statistics-and-graphs/introductory-concepts/p-value-and-significance-
level/significance-level/  

# corrplot the data --------------------------------------------------------------- 
# a Corplot matrix with coloured circles 
dtm <- cor( dt,  method = "spearman") 

par( mar=c(2,6,6,2)) 
res1 <- cor.mtest(dt,0.95) 
corrplot(dtm, p.mat = res1[[1]], sig.level=0.05, insig = "blank" , 
              bg="snow4", tl.cex=0.7, cl.cex=0.6, tl.srt=50, tl.col="snow4"  )   

 

 

Variables that seem to have no significant correlation when considered in a 1-to-1 situation, may act differently in the multiple regression. 
Sprint_remainingtimeratio is such a variable. 
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1.12 The correlation matrix in more detail for further analyses 
The R package PerformanceAnalytics shows all the information in 1 plot. 

The chart.Correlation() function from the PerformanceAnalytics package produces a very nice scatterplot of the correlation matrix, with 
histograms, kernel density overlays, absolute correlations, and significance asterisks (0.05, 0.01, 0.001). Although the schema becomes 
unreadable when we get too much variables. 

Visualization of a Correlation Matrix: 

On top right the (absolute) value of the correlation plus the result of the cor.test as stars.  

On bottom left, the bivariate scatterplots, with a fitted line. 

 

# plot the data ------------------------------------------------------------------ 
library(PerformanceAnalytics) 
suppressWarnings( chart.Correlation( dt,  histogram=TRUE, method="spearman") ) 

 

#' @param R         data for the x axis, can take matrix,vector, or timeseries 
#' @param histogram TRUE/FALSE whether or not to display a histogram 
#' @param method    a character string indicating which correlation coefficient 
#'                  (or covariance) is to be computed.  One of "pearson" 
#'                  (default), "kendall", or "spearman", can be abbreviated. 
#' @param /dots     any other passthru parameters into /code{/link{pairs}} 
# within this Correlation function the folowwing significance cutpoints are used: 
# Significance:     cutpoints = c(0    , 0.001, 0.01, 0.05, 0.1, 1), 
#                   symbols   = c("***", "**" , "*" ,  ".", " ")) 
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2 Choice of correlation method 
Usually, in statistics, we measure four types of correlations: Pearson correlation, Kendall rank correlation, Spearman correlation, and the Point-
Biserial correlation. 

The histograms show that most of the data is not normalized and therefor use the Spearman correlation. In R we set this method in a variable. 

cormethod = "spearman" 

Spearman rank correlation 

Spearman rank correlation is a non-parametric test that is used to measure the degree of association between two variables. It was developed by 
Spearman, thus it is called the Spearman rank correlation. Spearman rank correlation test does not assume any assumptions about the 
distribution of the data and is the appropriate correlation analysis when the variables are measured on a scale that is at least ordinal. 

Further underpinning of the choice for Spearman can e.g. found at: 
http://stats.stackexchange.com/questions/3730/pearsons-or-spearmans-correlation-with-non-normal-data/3744#3744  
 

Spearman’s correlation is a rank based correlation measure; it’s non-parametric and does not rest upon an assumption of normality.  
The sampling distribution for Pearson’s correlation does assume normality; in particular this means that although you can compute it, 
conclusions based on significance testing may not be sound. …with large sample this is not an issue. With small samples though, where 
normality is violated, Spearman’s correlation should be preferred. 
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3 Automatic methods to find the leading (predictor) variables 

3.1 Multiple regression 
See: http://www.statmethods.net/stats/regression.html   

The step formula can be used to find the predictors for a chosen lagging (response) variable. Step computes the (generalized) Akaike An 
Information Criterion for a fitted parametric mode. 

Automatic methods are useful when the number of explanatory variables is large (as in our case) and it is not feasible to fit all possible models. 
In this case, it is more efficient to use a search algorithm (e.g., Forward selection, Backward elimination and Stepwise regression) to find the 
best model. 

What would be our lagging (response) variable for BLM? From our correlation matrix we learn that Lead-time BLM (LT_BLM) has the most 
significant relations with other variables. Also Cnt_Sqm is a candidate, but is would be more a leading (predictor) than a lagging (response) 
variable. (Lt_blm and ctn-sqm were work names during the first cycle for sprint_averageleadtime and sprint_numberofsquadmembers.) 

At least this is what we thought in the beginning. During the analyses we found that sprint_plannedstoriescompletionratio  was a better lagging 
indicator. It is more related to the predictiveness and stability of the squad. 

For each lagging variable to test, we calculate by providing the model and let the step function do its work and show the result. A function has 
been created so that we can easily repeat the work: 

stepmodel <- function( formulastring, data) { 

    model <- lm( formula=as.formula(formulastring), data=data) 

    model_step <- step(model, direction="backward", trace=FALSE) 

    plot_coeffs(model_step)    #user defined function to plot coefficients 

} 

For each model we define the lagging variable and the independent variables that we want to ignore. The latter have a “-” sign before their 
name. 

Example: 

stepmodel( completion_ratio ~ . - sprint_plannedpointscompletionratio -sprint_plannedstoriescompletion_ratio, data=dt ) 
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3.2 Sprint_PlannedStoriesCompletionRatio 
Sprint_plannedstoriescompletionratio ignores the scope growth of user stories and this is an advantage compared to 
Sprint_plannedpointscompletionratio. 

Definition: Sprint_PlannedStoriesCompleted / Sprint_PlannedStories 

Model: sprint_plannedstoriescompletionratio is strongly correlated with sprint_pointscompletionratio and sprint_plannedpointscompletionratio. 
Therefore we omit these in the regression model. 

stepmodel( sprint_plannedstoriescompletionratio ~ . -sprint_pointscompletionratio 
 -sprint_plannedpointscompletionratio,  data=dt ) 

## sprint_plannedstoriescompletionratio 
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3.3 Planned Points Completion Ratio 
More interesting it is to see whether you finish what you promised. In other words does a team complete its planned work. And if not, what is 
the cause? 

Definition: Sprint_PlannedPointsCompleted / Sprint_PlannedPoints 

Model: sprint_plannedpointscompletionratio is strongly correlated with sprint_storiescompletionratio and sprint_plannedpointscompletionratio. 
Therefore we omit these in the regression model. 

stepmodel( sprint_plannedpointscompletionratio ~ . -sprint_pointscompletionratio 
 -sprint_plannedstoriescompletionratio,  data=dt ) 
## sprint_plannedpointscompletionratio 

 

 

Result: 
We see that especially that “sprint_unplannednewpointscompletionratio” and sprint_averagepointsperstory has a negative impact on the 
completion of planned story points. 

The variable “sprint_unplannedexistingpointscompletionratio” has also has a negative influence. The mechanism behind this is unclear. Could 
it mean that that priority gets changed and that fellow team members are disturbed in completing the planned work? 

The other variables that are relevant do not show a high impact and can be neglected. 
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3.4 Sprint_pointscompletionratio 
Definition: Sprint_CompletedPoints / Sprint_PlannedPoints 

Model: This definition includes unplanned work in the CompletedPoints and possible scope growth (- or +). 

summary(dt$sprint_pointscompletionratio) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## 0.04545 0.56010 0.68920 0.69730 0.89870 1.80000 

stepmodel( sprint_pointscompletionratio ~ .  -sprint_plannedpointscompletionratio -
sprint_plannedstoriescompletionratio, data=dt ) 

## sprint_pointscompletionratio 

 

 

Result 

x An increase of average story points leads to a lower completion rate. 
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3.5 Focus 
We expect that focus is high when the number of epics in one sprint is low. But is it true? 

Model: Count_epics_last_sprint is tested against all other variables 

 

stepmodel( sprint_numberofepicslastsprint ~ .  , data=dt ) 
## sprint_numberofepicslastsprint 

 

 

Results 

Positive impact: 

x Completing any kind of work (planned or unplanned existing work) increases the number of epics in the a completed sprint 

 

Negative impact: 

x Strongest negative impact is caused by the sprint_remainingtimeratio. So, if there is time left it seems that a squad continues with the 
other stories of the same epic?  

x Unplanned new work (Surprise work) is decreasing the number of epics in a sprint just a bit. 
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3.6 Lead Time 
Lead Time is not regarded as a lagging indicator, but still it is interesting to see what is influencing lead time. 

Definition: Here Lead time is the average time in days between creation of user story until completed, for the stories that got completed in the 
current sprint. The creation of the story happens outside the sprint. We might have to consider to leave it out of the dataset in the future and 
include it when observing a large timeline. 

stepmodel( sprint_averageleadtime ~ .  -sprint_pointscompletionratio -sprint_plannedpointscompletionratio, 
data=dt ) 
## sprint_averageleadtime 

 

Results 

x Unplanned new decreasing effect on the sprint average lead-time. This ratio is based on the completed stories either planned or unplanned. 
Unplanned new work has an incident character and must be realized in shorter time, hence smaller lead times and it replaces planned 
work. The overall effect seems to lower the average lead time. 
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3.7 Remaining Time 

stepmodel( sprint_remainingtimeratio ~ . , data=dt ) 
## sprint_remainingtimeratio 

 

Result  

x When unplanned existing work is completed in a sprint, than there was obviously time to do so. We state it this way, as it is more the 
other way around. If you have completed your planned work in time and have some time left, then you can pick up some additional work 
of the backlog. See next model. 
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3.8 Unplanned Existing Work 

stepmodel(sprint_unplannedexistingpointscompletionratio ~ . -sprint_pointscompletionratio , data=dt ) 
## sprint_unplannedexistingpointscompletionratio 

 

Result: 

x If there is time left after planned work is done, then unplanned is picked up. Arrival of unplanned new work on the other hand is really 
killing for unplanned existing work. Finishing planned work of new unplanned work has a negative impact on this ratio. 
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3.9 cdaas_cycletime_tst1_prd 
Definition: Time from first test deployment after last production has been done until the next production deployment. 

Model: This variable against all other variables. 

summary(dt$cdaas_cycletime_tst1_prd ) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.4137 11.2100 17.2200 17.9600 25.1800 46.5200 
stepmodel( cdaas_cycletime_tst1_prd  ~ .  , data=dt ) 
## cdaas_cycletime_tst1_prd 

 

Result 

These are the first conclusion based on a limited data set of 59 observations: 

x Although we don’t see a direct linear correlation, the multiple regression with cdaas_Cycletime_tst1_prd reveals interesting leading 
metrics for this variable. The other two CDaaS variables are not strongly and significantly correlated with the response variable 

x When average story points per story raises then also the cycle time increases (seems obvious)  
x Squads that remaining time left after they finished the planned work in the sprint, show a decrease in cycle time. 
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3.10 Focus on CDaaS variables only 
Definition: Time from first test deployment after last production has been done until the next production deployment. 

Model: This variable against only the two other CDaaS variables. 

summary(dt$cdaas_cycletime_tst1_prd ) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.4137 11.2100 17.2200 17.9600 25.1800 46.5200 
stepmodel( cdaas_cycletime_tst1_prd ~ cdaas_mtb_prd_lst90days + cdaas_numberofdeploymentsprd , data=dt ) 
## cdaas_cycletime_tst1_prd 

 

 

Result: 
Similar to the linear regression. cdaas_mtb_prd_lst90days is most strongly correlated to the response variable.  
The set of CDaaS variables is not complete yet. Much more variables must be retrieved from the system. 
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4 Combining the models in one model corrplot 

4.1 Impact of the leading variables on the lagging variables 
And finally after analyzing all lagging variables we can put them all together in one diagram to see the impact of each leading variable on the 
lagging variable candidates. 

The following two variables are lagging candidates within the current data set. 

# Response variable Remark 

1 sprint_plannedstoriescompletionratio Obvious. We want to know what influences our planned work. If we base it on 
the number of stories than it excludes the influence of scope growth in value of 
this ratio, so that it stays within the range 0 - 100%. 

2 sprint_plannedpointscompletionratio Obvious. We want to know what influences our planned work 

3 sprint_pointscompletionratio this is a model with all the completed points including the unplanned work 

Although the following variables are not considered lagging, we wanted to know the influence of other variables. 

# Response variable Remark 

4 sprint_numberofepicslastsprint We had the idea that working on multiple epics would distract the member 
focus and would negatively impact the completion rate. so let’s test it 

5 sprint_averageleadtime Is there anything that influences the Leadtime? 

6 sprint_remainingtimeratio What is influencing the amount of remaining time after all planned stories are 
completed 

7 sprint_unplannedexistingpointscompletionratio Added to prove that this sprint_remaingtimeration is a predictor to this variable 

8 cdaas_cycletime_tst1_prd Test if we can already see some interaction between cdaas and backlog 
management data 

 

## Impact of the leading variables on the lagging variable 

c1 <- stepcoeffs( sprint_plannedstoriescompletionratio ~ . -sprint_pointscompletionratio 
 -sprint_plannedpointscompletionratio,  data=dt) 

c2 <- stepcoeffs( sprint_plannedpointscompletionratio ~ . -sprint_pointscompletionratio -
sprint_plannedstoriescompletionratio,  data=dt) 

c3 <- stepcoeffs( sprint_pointscompletionratio ~ .  -sprint_plannedpointscompletionratio -
sprint_plannedstoriescompletionratio, data=dt) 

c4 <- stepcoeffs( sprint_numberofepicslastsprint ~ ., data=dt) 

c5 <- stepcoeffs( sprint_averageleadtime ~ .  -sprint_pointscompletionratio -
sprint_plannedpointscompletionratio, data=dt ) 

c6 <- stepcoeffs( sprint_remainingtimeratio ~ . , data=dt) 

c7 <- stepcoeffs( sprint_unplannedexistingpointscompletionratio ~ . -sprint_pointscompletionratio , 
data=dt) 

c8 <- stepcoeffs( cdaas_cycletime_tst1_prd  ~ ., data=dt) 

mar.before <- par("mar") 
  par( mar=c(2,7,7,2)+0.1 ) 
  ctest <- combinecoeffs( list(c1,c2,c3,c4,c5,c6,c7,c8),data=dt) 

  corrplotll(ctest, leadinglagging=TRUE, tl.cex=0.7, cl.cex=0.6, tl.srt=50,  bg="pink4", cl.ratio=0.8, 
cl.lim = c(-1,1), insig="blank", plotCI="n") 

mar <- mar.before 
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A modification of the existing corrplot function (see package corrplot) has been created to combine the models in one diagram. 

 

 

4.2 What do you see? 
x For each lagging variable you see what the impact is of the leading variable. 
x Blue means a positive impact and red means a negative impact on the lagging variable. 
x The strongest leading variable (neg or pos) has the largest circle. 
x Same size circles on the same row do not mean they are equal. 
x Empty squares means the coefficient was 0. 
x Crossed out variables are excluded from the lagging model. Usually this is done to avoid collinearity (independent variables that are 

highly correlated). 
x For each lagging variable the leading variables are calculated using multiple linear regression. 
x All multiple linear regression coefficients are then rescaled on a scale of -1 to 1. 

4.3 What can we tell? 
Using the leading/lagging diagram we can tell more about the interaction of the variables in the model. 

1. Higher average story points have a negative impact on the planned completion ratio (either points or stories) and the total 
completion ratio. This is the story of the jar filled with rocks instead of pebbles. Smaller pieces of work can easier be finished 
within the sprint time frame. Large chunks of work can flow to the next sprint, even if only half a day is necessary to finish it. 

2. Higher average story points decrease the number of epics in a sprint decrease. Pebbles and rocks again. The larger the average 
story points are, the lesser stories you probably have, since they also have to fit within the sprint. This statistically reduces the 
chance that they belong to multiple epics. 

3. Planned Stories Completion Rate: If this ratio goes up, then also the number of epics increases. at the same time unplanned 
backlog work (unplanned existing) reduces. 

4. Planned Stories Completion Rate: if this ratio goes up, the number of epics decreases. 
It was expected that it would have the same tendency as Planned Stories Completion Rate. This needs further study. Perhaps 
with a larger data set, we will see more details. 
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5. Remainingtimeratio: If there is time left after all planned work is done, than we see that squad pickup backlog work. 
6. However, when Unplanned new work (forgotten to specify, or incidents) pops up it has a negative impact on the planned work 

and the ability to pick up backlog work. Also the number of epics decreases as well as the average lead time. 
7. Average lead-time is negatively impacted by new unplanned work, possibly because it delays planned work that was already 

started in the current sprint or earlier and can’t finish in the planned time. Average lead-time is not tightly linked to a sprint, but 
more to a user story. 

8. No significant impact is caused in these models by the other variables. 

4.4 Conclusions 
There are two candidates for the lagging variable:  

x sprint_plannedstoriescompletionratio  
x sprint_plannedpointscompletionratio  

Sprint_plannedstoriescompletionratio is chosen as the lagging variable. 

Both ratios focus on the completion of planned work. 

Sprint_plannedstoriescompletionratio has the advantage that scope growth (measured in points) has no influence on the ratio value. 

The leading variables are:  

x sprint_unplannednewpointscompletedratio  
x sprint_unplannedexistingpointscompletedratio  

Unplanned new work (and also unplanned existing work) has a negative influence on the planned work and leads to delay. A squad should dig 
into the nature of the unplanned work, and think out ways to prevent unplanned work. The average points should be small enough to reduce the 
impact on the sprint_plannedstoriescompletionratio. 

Currently roughly 10% finish all the work that they plan at the start of the sprint. 

Dashboarding: 
Currently we don’t have a variable to calculated the planned points completed versus the total completed points. This would come in handy 
when creating the dashboard. 

1. Can we also use sprint_pointscompletionratio instead? No, it includes incidents and fill up work. Working on incidents or filling up 
buffers is not what squads should target for. 

2. Remaining time It was suggested in an article written by Jeff Sutherland that improving teams always have a little spare time left 
after the planned work was done. [Teams that Finish Early Accelerate Faster: A Pattern Language for High Performing Scrum 
Teams, Jeff Sutherland e.a., 2014] In the current dataset the remainingtimeratio is a low 3% and only 11% of the squads finish all the 
planned work. The remaining is not predictor for sprint_plannedpointscompletionratio. 

 

Recommendation for model improvement *  

1. We currently used the sprint_averagepointsperstory for completed user stories in the sprint. It would be better to calculate the 
average point per story for the user stories as present at the sprint change (Day 1). That gives a better idea of how large the average 
stories are that a squad has. 

2. Sprint_remainingtimeratio currently includes weekend days for remaining days and for the sprint duration. In the datamart model the 
working days will be excluded. 
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5 Outliers and Distribution 
Outliers are not taken out of the dataset yet.  

5.1 Theoretical Background 
DRAFT: 

https://www.r-bloggers.com/outlier-detection-and-treatment-with-r/ 

Outliers in data can distort predictions and affect the accuracy, if you don’t detect and handle them appropriately especially in regression 
models. 

 

https://explorable.com/statistical-outliers: 
Statistical outliers are data points that are far removed and numerically distant from the rest of the points. Outliers occur frequently in many 
statistical analyses and it is important to understand them and their occurrence in the right context of the study to be able to deal with them. 

 

An outlier can be a chance phenomenon, measurement error or due to an experimental error. It can also occur in special cases that have a heavy 
tail distribution, in which cases the assumption of a normal distribution may not hold. 

Certain statistical estimators are able to deal with statistical outliers and are robust, while others cannot deal with them. A typical example is 
the case of a median, that can deal with outliers well, since it would not matter whether the extreme point is far away or near the other data 
points, as long as the central value is unchanged. 

The mean, on the other hand, is affected by outliers as it increases or decreases in value depending on the position of the outlier. 

One should be careful while dealing with outliers and not mistake them for experimental errors or exceptions at all times. outliers can indicate 
a different property and may indicate that they belong to a different population. 

Many times, outliers should be given special attention till their cause is known, which is not always random or chance. Therefore a study needs 
to be made before an outlier is discarded. 

Statistical outliers are common in distributions that do not follow the traditional normal distribution. [ING: And such is the case in our dataset] 
For example, in a distribution with a long tail, the presence of statistical outliers is more common than in the case of a normal distribution. 

In case of a normal distribution, it is easy to see that at random, about 1 in 370 observations will deviate by more than three times the standard 
deviation from the mean. This ratio decreases drastically for more distant values. Therefore if there is a more than frequent case of data away 
from the mean, then the cause needs to be examined. 

For example, if out of 1000 data points, 5 points are at a distance of four times the standard deviation or more, then these outliers need to be 
examined. 

5.1.1 Detect Outliers 
Univariate approach 
For a given continuous variable, outliers are those observations that lie outside 1.5 * IQR, where IQR, the ‘Inter Quartile Range’ is the 
difference between 75th and 25th quartiles. Look at the points outside the whiskers in below box plot. 

http://www.statistics4u.com/fundstat_eng/cc_outlier_tests.html  : 

#par(mfrow=c(3,2)) 
for(i in seq(1,ncol(dt),1)) qqnorm(dt[,i], main=colnames(dt)[i]) 
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1 All histograms 
� Echo is set to off. Code is displayed. JPG files are created for use in PowerPoint files. 
�  

cn <- colnames(dt) 
mybreaks <- c( 100, 200, 50, 100, 50, NULL,100, 100, 100, 100,100,100,100,100,100,100,100)  
z <- 1 
par(mfrow = c((ncol(dt)+1)/2, 2)) 
repeat { 
  jpeg( filename=paste("HIST_" , cn[z], ".jpg", sep=""), width = 400, height=300) 
    hist( x=dt[,z] , xlab= cn[z], col="lightblue1", main=cn[z], breaks = mybreaks[z] ) 
    abline(v=median(dt[,z]), col="magenta", lwd=2) 
    abline(v=mean(dt[,z]), col="blue", lwd=2) 
    legend("topright", legend=c("Median", "Mean"), 
            fill = c("magenta", "blue"), lty=1:2, cex=0.8, 
           box.lty=0) 
  dev.off() 
  z = z+1 
  if (z > ncol(dt)){ 
    break 
  } 
} 
graphics.off() 

 

udf_singlehist( colname = "average_leadtime_sprint" , data=dt, breaks = 50) 
## [1] "average_leadtime_sprint does not exists as column name in data" 
udf_singlehist( colname= "average_story_points", data=dt, breaks = 25) 
## [1] "average_story_points does not exists as column name in data" 
udf_singlehist( colnum = 3, data=dt, breaks = 10) 
udf_singlehist( colnum = 4, data=dt, breaks=60) 
udf_singlehist( colnum = 5, data=dt, breaks=60) 
udf_singlehist( colname="sprint_plannedpointscompletionratio", data=dt) 
summary(dt$sprint_plannedpointscompletionratio) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.0000  0.4721  0.7241  0.6492  0.8258  1.0000 

There are only 10 squads out of 306 that have 0 points completed. 
35 squads, roughly 10% finish all the work that they plan. 

udf_singlehist( colname="sprint_remainingtimeratio", data=dt) 
summary(dt$sprint_remainingtimeratio) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## 0.00000 0.00000 0.00000 0.01425 0.00000 0.30770 
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The sprint_remainingtimeratio has a low 3% in this data set. This is as expected for a dataset where only 11% ends its planned work. Maybe it 
can’t be measured well enough. It might well be that user stories are put to completed at the end of the sprint. 

More histograms will be included in the nearby future. 
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6 External links  
The initial setup of this statistical part of the project follows the receipt as described in:  

https://ww2.coastal.edu/kingw/statistics/R-tutorials/multregr.html   

and was later adapted to insights from other websites 

7 System Environment 

## R version 3.3.2 (2016-10-31) 
## Platform: x86_64-w64-mingw32/x64 (64-bit) 
## Running under: Windows 7 x64 (build 7601) Service Pack 1 
##  
## locale: 
## [1] LC_COLLATE=Dutch_Netherlands.1252  LC_CTYPE=Dutch_Netherlands.1252  
## [3] LC_MONETARY=Dutch_Netherlands.1252 LC_NUMERIC=C     
## [5] LC_TIME=Dutch_Netherlands.1252   
##  
## attached base packages: 
## [1] stats     graphics  grDevices utils     datasets  methods   base   
##  
## other attached packages: 
##  [1] fpc_2.1-10                    cluster_2.0.6     
##  [3] kmeans.ddR_0.1.0              reshape2_1.4.2                
##  [5] psych_1.7.5                   RODBC_1.3-15                  
##  [7] coefplot_1.2.4                ggplot2_2.2.1                 
##  [9] texreg_1.36.23                PerformanceAnalytics_1.4.3541 
## [11] xts_0.9-7                     zoo_1.7-14                    
## [13] markdown_0.7.7                rmarkdown_1.3                 
## [15] xtable_1.8-2                  knitr_1.15.1                
## [17] corrplot_0.77                 
##  
## loaded via a namespace (and not attached): 
##  [1] modeltools_0.2-21 kernlab_0.9-25    lattice_0.20-34   
##  [4] colorspace_1.3-2  htmltools_0.3.5   stats4_3.3.2      
##  [7] yaml_2.1.14       foreign_0.8-67    DBI_0.6           
## [10] prabclus_2.2-6    plyr_1.8.4        robustbase_0.92-7 
## [13] stringr_1.2.0     munsell_0.4.3     gtable_0.2.0      
## [16] mvtnorm_1.0-6     evaluate_0.10     flexmix_2.3-13    
## [19] parallel_3.3.2    class_7.3-14      DEoptimR_1.0-8    
## [22] trimcluster_0.1-2 Rcpp_0.12.9       scales_0.4.1      
## [25] backports_1.0.5   diptest_0.75-7    ddR_0.1.2         
## [28] useful_1.2.1      mnormt_1.5-5      digest_0.6.12     
## [31] stringi_1.1.2     dplyr_0.5.0       grid_3.3.2        
## [34] rprojroot_1.2     tools_3.3.2       magrittr_1.5      
## [37] lazyeval_0.2.0    tibble_1.2        MASS_7.3-45       
## [40] assertthat_0.1    R6_2.2.0          mclust_5.2.3      
## [43] nnet_7.3-12       nlme_3.1-131 
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